Impact of single pMOSFET dielectric degradation on NAND circuit performance
نویسندگان
چکیده
Degradation of CMOS NAND logic circuits resulting from dielectric degradation of a single pMOSFET using constant voltage stress has been examined by means of a switch matrix technique. As a result, the NAND gate rise time increases by greater than 65%, which may lead to timing errors in high frequency digital circuits. In addition, the NAND gate DC switching point voltage shifts by nearly 11% which may be of consequence for analog or mixed signal applications. Experimental results for the degraded pMOSFET reveal a decrease in drive current by approximately 43%. There is also an increase in threshold voltage by 23%, a decrease in source to drain conductance of 30%, and an increase in channel resistance of about 44%. A linear relationship between the degradation of the pMOSFET channel resistance and the increase in NAND gate rise time is demonstrated, thereby providing experimental evidence of the impact of a single degraded pMOSFET on NAND circuit performance.
منابع مشابه
Degradation of Rise Time in NAND Gates
CMOS NAND gate circuit performance degradation caused by a single pMOSFET wearout induced by constant voltage stress in 2.0 nm gate dielectrics is examined using a switch matrix technique. The NAND gate rise time is found to increase by approximately 64%, which may lead to timing errors in high frequency digital circuits. The degraded pMOSFET reveals that a decrease in drive current by 41% and ...
متن کاملInvestigation of Single pMOSFET Gate Oxide Degradation on NOR Logic Circuit Operability
The impact of gate oxide degradation of a single pMOSFET on the performance of the CMOS NOR logic circuit has been examined using a switch matrix technique. A constant voltage stress of -4.0V was used to induce a low level of degradation to the 2.0nm gate oxide of the pMOSFET. Characteristics of the CMOS NOR logic circuit following gate oxide degradation are analyzed in both the DC and V-t doma...
متن کامل*-* Dual-Metal Gate Technology for Deep-Submicron CMOS Transistors
Dual-metal gate CMOS devices with rapid-thermal chemicalvapor deposited (RTCVD) Si3N4 gate dielectric were fabricated using a self-aligned process. The gate electrodes are Ti and MO for the Nand PMOSFET respectively. Carrier mobilities are comparable to that predicted by the universal mobility model for Si02. C-V characteristics show good agreement with a simulation that takes quantum-mechanica...
متن کاملEFFECT OF ELECTRIC FIELD ON PD ACTIVITY AND DAMAGE INTO SOLID DIELECTRIC MATERIALS
Abstract – In this paper, the effect of applied electric field on the damage due to partial discharges activity into the surroundings dielectrics of a narrow channel encapsulated within the volume of a dielectric material is evaluated using a kinetic model based on Particle in Cell - Monte Carlo Collision (PIC-MCC) model. After application of an electric field across a dielectric material which...
متن کاملA New Implementation of Frequency Selective Surface Cloak for Cylindrical Structures
The main purpose of this paper is to design, implement and measure a new sample of mantle cloak. A new method called mantle cloak is introduced by cloaking an object by a single, conformal meta-surface which can drastically suppress the scattering of the desired object. In this paper, a grid lattice is placed around a dielectric object as the cloaking structure. Previously, this FSS has been ut...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Microelectronics and reliability
دوره 48 3 شماره
صفحات -
تاریخ انتشار 2008